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SUBMANIFOLDS WITH A REGULAR PRINCIPAL
NORMAL VECTOR FIELD IN A SPHERE

TOMINOSUKE OTSUKI

Introduction

In [10], the author defined a principal normal vector for a submanifoid
M in a Riemannian manifold M. This concept is a generalization of the
principal normal vector for a curve and the principal curvature for a hyper-
surface. In fact, if M is a hypersurface, let ®(X, Y) be the value of the 2nd
fundamental form for any tangent vector fields X and Y of M. Then, we have

DX, Y)e = —(Fye,Yye
= normal part of VY = T,Y ,

where ¢ is the normal unit vector field and F is the covariant differentiation
of M. If 1 is a principal curvature at a point x of M and X is a principal
tangent vector at x corresponding to 4, then we have

TyY =<X,Y)le at x .

If we consider Ze as the principal normal vector at x of M, then the above con-
cepts for curves and hypersurfaces are in the same category.

In [10], the author investigated the properties of the integral submanifolds
in M for the distribution corresponding to a regular princial normal vector field
of M in an M of constant curvature. In the present paper, the properties of
M will be investigated for admitting a regular principal normal vector field,
and then the results will be applied to the case in which M is a sphere and M
is minimal and has two principal normal vector fields such that the correspond-
ing principal tangent spaces span the tangent space of M. Theorem 4 in this
paper is a generalization of Theorems 3 and 4 in [9].

1. Preliminaries

We will use the notation in [10]. Let M = M"*? be an (n + p)-dimensional
C= Riemannian manifold of constant curvature &, and M = M" an n-dimen-
sional C> submanifold immersed in M by an immersion ¢: M — M which has
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the naturally induced Riemannian metric by ¢. Let P: ¢*T(JW ) — T(M) be
the projection defined by the orthogonal decomposition:

Tqb(.t)(ﬂ) - Sb*(T_z(M)) -+ N_,,- ’ xeM ,

and put Pt =1 — P. Let N(M, M) denote the normal vector bundle of M in
M by the immersion ¢. Then we have

$*T(M) = TM) DNM, M) .

In the following, we denote the sets of C~ cross sections of T(M) and
NM, M) by X(M) and ¥-(M), and the covariant differentiations for M and
M by 7V and P, respectively. For the vector bundle N(M, M), we have the
naturally induced metric connection from M and denote the corresponding
covariant differentiation by L. Then for any X ¢ X(M), we have

1.1 Ve =VFy+ Ty on XM
(1.2) Ve=Ty+ VLt on XYM

with T, = PPy and V3 = PP ;.

Now, for a fixed point x e M, a normal vector v ¢ N, is called a principal
normal vector of M at x if there exists a nonzero vector e M, = T (M) such
that

1.3) T,z = {u,2pv for any ze M, ,

and the vector u is called a principal tangent vector for v. The set of all
principal tangent vectors for v and the zero vector form a linear subspace of
M, which is called the principal tangent vector space for v and is denoted by
E(x,v).

A normal vector field V' ¢ ¥1(M) is called a regular principal normal vector
field of M, if V(x) is a principal normal vector and dim E(x, V(x)),xe M, is
constant.

In the following, we suppose that V' is a regular principal normal vector
field of M. By Lemma 2 in {101, E(x, V(x)), x¢ M, form a C~ distribution of
M, which we denote by E(M, V). By Theorem 1 in [10], E(M, V') is completely
integrable. Now, we decompose M in the following orthogonal sum:

M, = E(x,V(x) + N(x,V(x) ,
and denote the distribution of N(x, V(x)), x e M, by N(M, V). Then
TM) = EM,V)DNM,V) .
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Let Q: T(M) —» E(M, V) and Q1: T(M) — N(M, V) be the natural projections
by this decomposition E(M, V) and N(M, V) have the naturally defined metric
connections induced from the one of M as vector bundles over M.

By means of Theorem 2 in [10], if the dimension m of the distribution
E(M,V) is greater than 1 and ¥V # 0 everywhere, then there exists a
uniquely determined cross section U of N(M, V) such that for any integral
submanifold M™ of E(M, V), U|M™ is a principal normal vector field of M™
in M®, and M™ is totally umbilic in M®.

2. The integrability condition of N(M, V)

In this section, we consider the case stated in the last paragraph in the 1st
section. For any y € E(x, V(x)), we define a linear mapping @, : N(x, V(x)) —
N(x, V(x)) by

(2.1) d)y(z) = Q'L(VZY) )

where Y is a C* local cross section of E(M, V) at x with Y (x) = y.

Lemma 1. @, is well defined.

Proof. Let B, be the set of frames b = (x, e, - -, €5, €44, * -, €,,,) such
that e, - - -, e, € E(x, V(x)) and

2.2) V(x) = i(xe, ., , Ax) > 0.

Then, we have!

(23) war:prwa+ Z F(ant’ a:]a"‘amar:m+1a“'an;
t=m+1
(2.4) U= 3 pe, .
r=m+1
Now, we put ¥ = i f.e, about x and z = 3 z,e, at x. Then by (2.3)
n=1 r=m+iil

QHP.Y) = Qi(; z,m,(g faea))

= Zl zZ ‘lzrfawaz(er)ez - ZL fazrfatret .

The right hand side of the above equation does not depend on the choice of
frame b ¢ B, at x and the extension Y of y, since ", are the components of
a cross section of EX(M,V)QNM,V)RQN*(M,V) where E¥(M, V) and
N*(M, V) are the dual vector bundles over M of M(M, V) and N(M, V) respec-
tively.

As in [10], we denote the set of all C* cross sections for any vector bundle
" T see the proof of Theorem 2 in [10].
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E-—Mby I'(E, M). Then, by Lemma 1, for any Y ¢ I'(E(M, V})), we can define
a mapping @,: I'(N(M, V)) — '(N(M, V)) in a natural way.

Theorem 1. Let M be an immersed submanifold of a Riemannian manifold
M of constant curvature, and V a nonzero regular principal normal vector field
of M in M such that the dimension of the distribution E(M, V) > 1. Then the
distribution N(M, V) is completely integrable if and only if @, for any
Y e '(E(M, V)) is self-adjoint on ['(N(M, V)).

Proof. The completely integrability of the distribution N(M, V) is equivalent
to the following condition:

do, =0 (modw, ---,0,), on B, a=1,.--.,m.

From the structure equations and (2.3), we obtain

x

dwa = Z Wy /\wba - Z w, AN (Prwa + Z F(Lrta)t)
b T T
= '—'Zrarlwr/\wl (mOdwh"'ywm)-
Therefore, N(M, V') is completely integrable if and only if /',,, = I',,,, which

is clearly equivalent to that for any Y ¢ I'(E(M, V)), and Z, W ¢ '(N(M, V)),
we have

CPAZY, W = (Dy(W), Z>

3. Properties of &, and F

On B,, we have

Wynyy = Awg , Wos = 07

(3.1)
) a;;']_-.-,m, ﬁ:n+2,...’n+p_

From (2.3), (3.1) and the structure equations it follows that?

I‘"I'p
dwu.r - BZ NTRA wg, — CWq AN W,
]

=0, 3 War N0 + 25 I'ypswar N0 + 35 p0 N @y,
B b,s 3

al )
1 2 Do Ny, — 2 2 An+x,1'swa Moy — cw, N, ,
5,1 3
2 Tn the following, the ranges of indices are:

a, b,c. =1, mrst-=m+1,--,n;
Lk, o =1, n.
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dpn + Lo = don N + o, 5w org
+ ; dle,s Moy + 2 s il [ONVANCIN
=dp, Nw, + p, ; wawaa + o, Z; 0sWa /\ W
tor B Dogo, Aoy + L dlors N o
+ 2 ’]—'a”]—'mwb N @, —{—z;—' Ionw N o, ,

8,6

and hence

(dpr + 2 s — 0 2 psws> Nag

+ Z (d[‘ars + ; Fbrswbtz + Z L opste, + ; I’urtwts
+ Z ]1artrbtswb + o, Z Fastwc + 0,50, + 'lAml,rswn) Awy = 0.
) ¢ /

Since m > |, from the above equations we have

(3.2) dp, + 21 psws, — p, 25 0505 = ; Fo,,

dle, + ; Iy sone + Zl] o0 + Z[] Loy
(3.3) + LZZ Lorel'oesy + 0, 25 Ly + (€0ry A4 Ay i)
= F 0, + ; Bo, s,
where F,, and B,,,, are functions on B,, and components of a tensor of type

(1,1) of N(M, V) and a tensor of type (0, 1) ® (1,2) of E(M,V)R®NM, V)
respectively, and

(34) Barst == Bar&s .

Now, let F and Byy, for X e I'(E(M,V)) and W e I'(N(M,V)), be the
endomorphisms on N(M, V) defined by

F(et) - Z Frter ’
Byw(e) = 3 B, X Wee, ,

e,r,s

where X = >, X,e, and W = 3 W_e,. We denote the covariant differentiation

of the tensoraproduct bundles on E(M, V) and N(M, V) by D, Then, (3.2) and
(3.3). can be written as
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(3.5) D,U = (Z,USU + F(QX2))

DD(W) — Dy, (W) — Dx(DW) + Dx(Dg ) (W)
(3.6) + {0x(QH2D)), WHU + <Z, X){eW — Tw(V)}

where Z ¢ ¥(M), X ¢ I'(E(M, V), W ¢ I'(N(M, V)), and the 2nd term jon the
right hand side of (3.6) is expressed, by means of (3.4), as

3.7 Byw(Y) = Byy(W) , Yel'(NM,V)) .

From (3.5) follows easily

Lemma 2. Under the conditions of Theorem 1, U ¢ '(N(M, V)) is parallel
along any integral submanifold of the distribution E(M, V).

Proof. For any X ¢ '(E(M, V)), we have

(3.5 DyU=0.

Lemma 3. Under the conditions of Theorem 1, F can be defined by the
equation

(3.5 F(W) = DyU — (W, UDU .

It is clear that (3.5) is equivalent to (3.5) and (3.5”). Substituting (3.5")
into (3.6), we get

Byw(QHZ)) = Dy(Dx(W)) — @p , (W) — Dx(Dz(W)) + (Do z,(W))
+ {{0x(QHD)), W) + (X, ZXW, UpU
+ (X, Z){eW — Ty(V) — Dy U} .

In particular, for Z = Y ¢ I'(E(M, V),
Dy(Dx (W) — Bp, x(W) — D(Dy(W)) + Dx(Dx(W))
and, for Ze '(N(M, V),

BXW(Z) - DZ(QX(W)) - ¢DZX(W)
— Ox(DW) + (D(2Z), W)U ,

(3.6)

(3.6”)

which may be considered as the formula of definition of By .
Now, for any X, Y ¢ I'(E(M, V)), we have .

DyY — DX = Q.Y — FyX) = O(X, Y] = [X, Y],

since E(M, V) is completely integrable. Therefore, from (3.6") follows



SUBMANIFOLDS IN A SPHERE 127

(3.8) Dy @y — Dy @y + Oz py— Ox-Dy + Op-Dy + [0y, 0y] =0 .

Lemma 4. For any X,Y e I'(E(M, V)), by defining 6. I(N(M, V)) —
L(NM, V) by
3.9 0x = Dy — @y,
we have
Ox-0y — Oy-0x = Ox v + Ry,

where R+ denotes the curvature tensor of N(M, V).
Proof. By means of (3.8), we obtain
Ox-0y — Oy-0x = (Dy — Q)X)(DY — @y) — (Dy — ¢Y)(DX - d)x)
= DyDy — DyDy + [@x, Oyl — Dx®y
— OxDy + Dy@y + OyDy
= Ryy + D[X,Y] - (D[X,YJ
= Rfy + 0[1',1'] .

From Lemma 4 follows easily

Theorem 2. Under the conditions of Theorem 1, if N(M, V) is flat along
any integral submanifold of the distribution E(M, V'), then @ is a representation
of the Lie algebra I'(E(M, V) on the space of endomorphisms of NIM, V).

Formula (3.6)’ implies immediately

Lemma §. Forany X e I'(E(M, V), with || X|| = 1. and W e I'(N(M, V),

D (@y(W)) — O (Dx(W)) — (DDXX(W.) + BLUW)
= DyU 4 Ty (V) — (W, USU — oW .

4. Case Mr+» = §»+»

In this section, we suppose furthermore that M™*? is an (n + p)-dimensional
unit:sphere $**? in Euclidean space R**?*!. We may consider the frame b =

(x, e, -, e,,,) of M to be Euclidean in R**#~* and define a vector field on
M by
4.1 E=U+V— €ripsr = 2 o€, + Ae,., — €rnipsl s

where e,,,,, = xe M. & is clearly orthogonal to Ef(x, V(x)). Then, by (2.3),
(3.1).and w; ,,,,, = —w;, we have
n+p
de, = ), Wopep + Wo,nrpi1€nspin
4.2) B=1
= ? Wap€y + 0.8 + rZs -[—'arswser .
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Next, we also have

n+p
dé = Z dp-rer + d'zenu + Z Or (BZ W, p€p — wren+p+1)
T T =1 /
nt+p
+ A4 o, 585 — 2, 08
B=1 ?
= Z (dp-r -+ 11_4-‘ 0 Wyr — A ; An+1,rlwl - wr>er
+ (dx + Z An+1,L1’ plwr>en+1
LT

+ Z \{an+]’ﬁ + ¢Z: Aﬂ[,»ﬂ[(!),,) e},3

B >nAl\

- Z Or@r€nypi (mode, -+, e,),
where w,, = Z A,;,w,. On the other hand, using (3.3) and (3.4) in [10]:
(4.3) d1= 5 Broyor,  Monny =T Byo,
exterior differentiation of (3.1) gives

Z waL(An kit T xa[?’) + Bn+1,ra)a. =0 H
¢t

2 0oy, + By, =0, (mod @, 1, -+ w,) .
t
Substituting (2.3) into the above equations, we get

Bn~Lr i YZ: loLAn-H,tr — '2107' »

4.4)
B, + XA, =0, B>n+1.
Making use of (4.3) and (4.4), we have

@ = T (do, + T pone = AT Auio — 0, )e,

+ A Z prwrenal - Z Prwren+p+1 ’ (mOd €, - - '7em) .
7 T

(4.5)

Now, we consider the following Euclidean (m 4 1)-vector in R**»~},
(4.6) g=e/N - Ne, NE.

By means of (4.2) and (4.5), we obtain
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n

de = 3, p.o.m

r=m+1

+ Zel/\ e /\ea_l/\ Z[’a,‘Swse,/\eaH‘»\ Ve /\gm/\E
a+rl o

4.7
+ 2 l(dpr + ZL: 0@ — 235 Anyi ) — (u-r) e - Ne, Ne,
r=m+ [}

_Zprwrel/\"'/\em/\zpﬂelr
r t
which is equivalent to the following equation:

dzjr: <U,Z>7r + el/\ ce /\em/\(DZU_ \/U’Z/\U + TZ(V)-Z)

(4.8) m
+ Zle‘/\ o Neg NP (QHUZD)) /ey N - Nen NE,

for Z ¢ X(M). In particular, we have
4.9 dyr =0, for X e '(E(M, V) .
Hence, we can easily reach

Theorem 3. LetV be a nonzero regular principal normal vector field of M
in S**? < R**?*! such that the dimension m of the distribution E(M, V) > 1.
Then for any maximal integral submanifold of E(M, V') there exists an (m + 1)-
dimensional linear subspace E™*' such that it is contained in the m-dimensional
sphere E™+' () S**?_ Furthermore, the condition for all the E™** to be parallel
to a fixed one is

4.10) D,U—-U,Z5U+T,(V)—Z=0 for any Z ¢ '(N(M, V))
and
4.11) Py =0 forany X e '(EM, V)) .

Remark, If M is a minimal hypersurface in $” "' and m = n — 1, then we
have (see [10, §3])

Bgp = (log z1/71),(00, s

where 2 = || V| (principal curvature of multiplicity n — 1), and 4 is a function
of arc length ¥ of an orthogonal trajectory of the family of the integral sub-
manifolds. Thus [',,, = 0 and U = (log 3*)’e,.. Hence (4.11) is trivially true
and (4.10) becomes

(log 2/2)" — {(log 2"y + (n — DA -1 =0

Theorem 4. Let M*(n > 3) be a minimal submanifold in S**? C R**r*!
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with two regular principal normal vector fields V and W such that
EM,VOEM, W) =TWM) .

Then there exists a linear subspace E™*? through the origin of R**?*! such that
Mn _ En+2 n Sn+p'

Proof. We may suppose the dimension m of the distribution £(M, V) > 1.
Since V =+ W at each point, E(M, V) and E(M, W) are orthogonal by L.emma
1 in [10]. We use frames b = (x, e, - - -, €,,,) such that e, - - -, e,, e E(M, V)
and e,,,, ---,e,e EM,W) = N(M, V). By putting ¥V = }] 4,e, and W =

a>n
2 M.€,, We obtain
a>n
Auﬂj = Zaaaj 5 Aarj = .uaarj )
a=n+1---,n+p; a=1,.--,m;
r=m+1,.---,n; j=1,---,n.

Since M~” is minimal, it follows that
OZZAuii:mza_'_(n’_m);ua:O’

that is,
myV +nmn—mw=20.

Since V = W, we see that ¥V # 0 and W # 0. Therefore we may put V =
Ae, (2 > 0), W = pe, ., and then have

wan+1:2wa’ WBrp oy = MOy wiﬁ:O (ﬁ=n+2,"‘,n+P)-

Hence M-index of M™ in $**? is 1 everywhere. By Theorem 1 in [9], there
exists an (n + 1)-dimensional totally geodesic submanifold of $**? containing
M™ as a minimal hypersurface, which is the intersection of a linear subspace
E™*? through the origin of R**#*! and $"*?.
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